Abstract

Potassium channel dysfunction in congenital and acquired forms of long QT syndrome types 1 and 2 (LQT1 and LQT2) increases the beat-to-beat variability of the QT interval. To study about the little known variability (instability) of other aspects of ventricular repolarization (VR) in humans by using vectorcardiography. Beat-to-beat analysis was performed regarding vectorcardiography derived RR, QRS, and QT intervals, as well as T vector- and T vector loop-based parameters during 1-minute recordings of uninterrupted sinus rhythm at rest in 41 adult LQT1 (n = 31) and LQT2 (n = 10) mutation carriers and 41 age- and sex-matched control subjects. The short-term variability for each parameter, describing the mean orthogonal distance to the line of identity on the Poincaré plot, was calculated. Mutation carriers showed significantly larger (by a factor 2) instability in most VR parameters compared to controls despite higher instantaneous heart rate variability (STVRR) in the control group. The longer the QT interval, the greater was its instability, and the instability of VR dispersion measures. A greater instability of most aspects of VR already at rest seems to be a salient feature in both LQT1 and LQT2, which might pave the way for early afterdepolarizations and torsades de pointes ventricular tachycardia. In contrast, no signs of increased VR dispersion per se were observed in mutation carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.