Abstract

In this paper we discuss some mathematical issues related to the stability of quasistatic paths of finite dimensional mechanical systems that have a smooth or an elastic-plastic behavior. The concept of stability of quasi-static paths used here is essentially a continuity property relatively to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces (which here plays the role of the small parameter in singular perturbation problems). A related concept of attractiveness is also proposed. Sufficient conditions for attractiveness or for instability of quasi-static paths of smooth systems are presented. The Ziegler column and other examples illustrate these situations. Mathematical formulations (plus existence and uniqueness results) for dynamic and quasi-static elastic-plastic problems with linear hardening are recalled. A stability result is proved for the quasi-static evolution of these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.