Abstract

The motion of quantized vortices is studied using a vibrating wire in superfluid 4He. A vortex filtering method provides a superfluid practically free of remanent vortices in which the vibration of a wire cannot generate turbulence. Vortex lines are produced by cooling through the superfluid transition and remain forming bridges between a wire and a surrounding wall. Bridged remanent vortices increase the resonance frequency of a vibrating wire: the rate of an increase due to the remanent vortices is constant in a laminar flow regime and steeply increases in a turbulent flow regime with increasing wire velocity. These results suggest that oscillation of the bridged vortices provides a linear contribution to the wire vibration in the laminar flow regime, until instability occurs in the oscillation of the vortices, causing turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.