Abstract

In a scalar reaction-diffusion equation, it is known that the stability of a steady state can be determined from the Maslov index, a topological invariant that counts the state's critical points. In particular, this implies that pulse solutions are unstable. We extend this picture to pulses in reaction-diffusion systems with gradient nonlinearity. In particular, we associate a Maslov index to any asymptotically constant state, generalizing existing definitions of the Maslov index for homoclinic orbits. It is shown that this index equals the number of unstable eigenvalues for the linearized evolution equation. Finally, we use a symmetry argument to show that any pulse solution must have non-zero Maslov index, and hence be unstable.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.