Abstract

The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper–anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.