Abstract
A theoretical analysis of the parametric harmonic response of two resonant modes is made based on a cubic nonlinear system. The analysis based on the method of multiple scales. Two types of the modified nonlinear Schrödinger equations with complex coefficients are derived to govern the resonance wave. One of these equations contains the first derivatives in space for a complex-conjugate type as well as a linear complex-conjugate term that is valid in the second-harmonic resonance cases. The second parametric equation contains a complex-conjugate type which is valid at the third-subharmonic resonance case. Estimates of nonlinear coefficients are made. The resulting equations have an interesting in many dynamical and physical cases. Temporal modulational method is confirmed to discuss the stability behavior at both parametric second- and third-harmonic resonance cases. Furthermore, the Benjamin–Feir instability is discussed for the sideband perturbation. The instability behavior at the sharp resonance is examined and the existence of the instability is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.