Abstract

AbstractIn this paper, we are concerned with the instability problem of one global transonic conic shock wave for the supersonic Euler flow past an infinitely long conic body whose vertex angle is less than some critical value. This is motivated by the following descriptions in the bookSupersonic Flow and Shock Wavesby Courant and Friedrichs: if there is a supersonic steady flow which comes from minus infinity, and the flow hits a sharp cone along its axis direction, then it follows from the Rankine-Hugoniot conditions, the physical entropy condition, and the apple curve method that there will appear a weak shock or a strong shock attached at the vertex of the cone, which corresponds to the supersonic shock or the transonic shock, respectively. A long-standing open problem is that only the weak shock could occur, and the strong shock is unstable. However, a convincing proof of this instability has apparently never been given. The aim of this paper is to understand this. In particular, under some suitable assumptions, because of the essential influence of the rotation of Euler flow, we show that a global transonic conic shock solution is unstable as long as the related sharp circular cone is perturbed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.