Abstract

We investigate the instability of charged massive scalar fields in Kerr-Newman spacetime. Due to the super-radiant effect of the background geometry, the bound state of the scalar field is unstable, and its amplitude grows in time. By solving the Klein-Gordon equation of the scalar field as an eigenvalue problem, we numerically obtain the growth rate of the amplitude of the scalar field. Although the dependence of the scalar field mass and the scalar field charge on this growth rate agrees with the result of the analytic approximation, the maximum value of the growth rate is three times larger than that of the analytic approximation. We also discuss the effect of the electric charge on the instability of the scalar field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.