Abstract

In this work, we have investigated the dynamical instability of spherically symmetric gravitating object under expansion-free condition in Einstein Gauss–Bonnet gravity. In this context, the field equations and dynamical equations have been established in the Gauss–Bonnet gravity. The linear perturbation scheme has been used on the dynamical equations to construct the collapse equation. The Newtonian, post Newtonian and post Newtonian approximations have been applied to investigate the general dynamical (in)stability equations. It has been observed that the instability range of the collapsing source is independent of adiabatic index Γ (stiffness of the fluid does not play any role). The instability range can be determined by the pressure anisotropy, energy density profile, Gauss–Bonnet parameter α and some constraints at Newtonian, post Newtonian and post Newtonian order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.