Abstract

We present a linear analysis of the stability of accretion disks in which angular momentum is removed by the magnetic torque exerted by a centrifugally driven wind. The effects of the dependence of the wind torque on field strength and inclination, the sub-Keplerian rotation due to magnetic forces, and the compression of the disk by the field are included. A WKB dispersion relation is derived for the stability problem. We find that the disk is always unstable if the wind torque is strong. The growth time scale of the instability can be as short as the orbital time scale. The instability is mainly the result of the sensitivity of the mass flux to changes in the inclination of the field at the disk surface. Magnetic diffusion in the disk stabilizes if the wind torque is small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.