Abstract

A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of close-to-equilibrium patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be far-from-equilibrium exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work (Cygan et al., 2021 [4]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.