Abstract

A 7.6 m high geogrid reinforced soil retaining wall (RSW) was constructed at the end of an embankment on very thick, soft Shanghai clay with 12 m deep prefabricated vertical drains (PVDs). The settlement of the ground, the wall movement and pore water pressure were monitored during the construction. From day 118, halfway through the construction, unexpected pore water pressure increment was recorded from the pore water pressure meters installed in the PVD drained zone indicating a possible malfunction of the PVDs due to large deformation in the ground. After the last loading stage, on day 190, a sudden horizontal movement at the toe was observed, followed by an arc shaped crack on the embankment surface at the end of the reinforced backfill zones. The wall was analyzed with a coupled mechanical and hydraulic finite element (FE) model. The analysis considered two scenarios: one with PVDs fully functional, and the second one with PVD failure after day 118 by manually deactivating the PVDs in the FE model. The comparison between the measured and simulated ground settlement, toe movement, and pore water pressure supported the assumption on the malfunction of the PVDs. It is believed that the general sliding failure in the wall was caused by the increase of pore water pressure in the foundation soil and soils in front of the toe. It is suggested that possible failure of PVDs should be considered in the design of such structures, and the discharge rate of the PVDs and the pore water pressure should be closely monitored during the construction of high soil walls on soft soils to update the stability of the structures, especially for grounds where large deformations are expected which may cause the failure of the PVDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call