Abstract

We address the stability of solitary waves to the complex cubic–quintic Ginzburg–Landau equation near the nonlinear Schrodinger limit. It is shown that the adiabatic method does not capture all possible instability mechanisms. The solitary wave can destabilize owing to discrete eigenvalues that move out of the continuous spectrum upon adding nonintegrable perturbations to the nonlinear Schrodinger equation. If an eigenvalue does move out of the continuous spectrum, then we say that an edge bifurcation has occurred. We present a novel analytical technique that allows us to determine whether eigenvalues arise in such a fashion, and if they do, to locate them. Using this approach, we show that Hopf bifurcations can arise in the cubic–quintic Ginzburg–Landau equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.