Abstract
In two-phase flows of steam, when the velocity is between the equilibrium and frozen speeds of sound, the system is fundamentally unstable. Because any disturbance of the system, e.g. imposition of a small supercooling on the fluid, will cause condensation, the resulting heat release will accelerate the flow and increase the supercooling and thus move the system further from thermodynamic equilibrium. But in high-speed flows of a two-phase mixture, dynamic changes affect the thermodynamic equilibrium within the fluid, leading to phase change, and the heat release resulting from condensation disturbs the flow further and can also cause the disturbances to be amplified at other Mach numbers. To investigate the existence of instabilities in such flows, the behaviour of small perturbations of the system has been examined using stability theory. It is found that, although the amplification rate is highest between the equilibrium and frozen speeds of sound, such flows are temporally unstable at all Mach numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.