Abstract
The stability of a system described by Volterra integrodifferential equations is investigated in the critical case when the characteristic equation has a pair of pure imaginery roots. Conditions for instability, analogous to the well-known conditions from the theory of differential equations [1], are derived. (A similar result was established previously in [2] for integrodifferential equations of simpler structure with integral kernels of exponential-polynomial type). For the proof, several manipulations are used to simplify the original equation and, in particular, to reduce the linearized equation to the form of a differential equation with constant diagonal matrix. (An analogous approach was used to analyse instability for Volterra integrodifferential equations in the critical case of zero root in [3, 4]). As an example, the sign of the Lyapunov constant in the problem of the rotational motion of a rigid body with viscoelastic supports is calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.