Abstract

Flow in a channel with corrugated walls has been studied, with the primary goal of establishing channel geometries that enhance achievable mixing at possibly low drag increase. The wall corrugation has the form of a sinusoidal wave oriented transversely, i.e., the lines of constant elevation (or phase) are parallel to the direction of the flow. The analysis is performed up to the Reynolds numbers resulting in the formation of secondary states. The first part of the analysis is focused on the properties of the two-dimensional, base flow. Mainly, the dependence of the drag on the channel’s geometry is characterized. The second part of the analysis discusses the onset of the three-dimensional traveling wave instability. Linear stability is investigated by the Direct Numerical Simulation of the Navier-Stokes equations. Critical conditions for the onset of instabilities at a range of geometric parameters are determined. Finally, nonlinear saturation of the unstable modes and the resulting secondary flows is examined. It is shown that the drag reduction property of the base flow can be maintained in the state resulting from non-linear saturation of the disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call