Abstract

For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.