Abstract

Atmospheric argon microplasmas driven by 1.0 GHz power were studied by microwave circuit analyses and spatially-resolved optical diagnostics. These studies illuminate the mechanisms responsible for microplasma stability. A split-ring resonator (SRR) microplasma source is demonstrated to reflect excess microwave power, preventing the ionization overheating instability while limiting electron density to approximately 1 × 1014 cm−3 and OH rotational temperature to 760 K at 0.76 W. Providing the SRR microplasma with an electrical path to ground, however, allows the microplasma to transition from the SRR mode to the so-called transmission line mode (T-line). This transition is due to matching of the microplasma and transmission line impedances. The higher power T-line mode supports a more intense microplasma with electron density of 1 × 1015 cm−3 and OH rotational temperature of 1480 K with 15 W absorbed power. While the SRR mode is optimized for ignition and sustaining a stable nonequilibrium plasma, and T-line mode is better suited for driving a hot, high density microplasma. The estimated microwave discharge voltages were 15 V and 35 V in SRR mode and T-line mode, respectively, and the voltages are rather independent of input power. Microplasma stability is due to a combination of impedance mismatching and direct control of power, both inherent to microwave circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.