Abstract

Electrochemistry is necessarily a science of interfacial processes, and understanding electrode/electrolyte interfaces is essential to controlling electrochemical performance and stability. Undesirable interfacial interactions hinder discovery and development of rational materials combinations. By example, we examine an electrolyte, magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) dissolved in diglyme, next to the Mg metal anode, which is purported to have a wide window of electrochemical stability. However, even in the absence of any bias, using in situ tender X-ray photoelectron spectroscopy, we discovered an intrinsic interfacial chemical instability of both the solvent and salt, further explained using first-principles calculations as driven by Mg2+ dication chelation and nucleophilic attack by hydroxide ions. The proposed mechanism appears general to the chemistry near or on metal surfaces in hygroscopic environments with chelation of hard cations and indicates possible synthetic strategi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.