Abstract

This paper is devoted to the study of food chain predator–prey model. This model is given by a reaction–diffusion system defined on a circular spatial domain, which includes three-state variables namely, prey and intermediate predator and top predator and incorporates the Holling type II and a modified Leslie–Gower functional response. The aim of this paper is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The local and global stabilities of the positive steady-state solution and the conditions that enable the occurrence of Hopf bifurcation and Turing instability in the circular spatial domain are proved. In the end, we carry out numerical simulations to illustrate how biological processes can affect spatiotemporal pattern formation in a disc spatial domain and different types of spatial patterns with respect to different time steps and diffusion coefficients are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.