Abstract

The applications of swirling interfaces with heat and mass transfer are diverse and impactful, spanning industries from energy and manufacturing to healthcare and environmental protection. This study focuses on the stability of such interfaces where a viscous fluid interacts with a Rivlin–Ericksen (RE) viscoelastic fluid, undergoing heat and mass transfer. In this paper, the fluids are enclosed between two cylinders, one stationary and the other rotating. Mathematical equations are solved using potential flow theory. The interface stability is assessed using a normal mode procedure, leading to a second-order polynomial equation. The study finds that swirling flow reduces perturbation amplification, especially when heat and mass transfer occur simultaneously. However, the viscoelastic nature of the Rivlin–Ericksen fluid destabilizes the interface. Overall, this research provides valuable insights into complex fluid behavior with applications across industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call