Abstract

This paper analyzes the problem of instability in enhancement-mode gallium nitride (GaN) transistors based half-bridge circuits. The instability may cause sustained oscillation, resulting in overvoltage, excessive electromagnetic interference (EMI), and even device breakdown. GaN devices operate in the saturation region when they conduct reversely during the dead time. Under the influence of parasitic parameters, the GaN-based half-bridge circuit exhibits positive feedback under certain conditions, thus, resulting in sustained oscillation. A small-signal model is proposed to study this positive feedback phenomenon. Like the second-order under-damped system, damping ratio is defined to determine the system's stability. Based on the model, the influence of circuit parameters on instability is investigated and guidelines to suppress the oscillation are given. Reducing the common-source inductance, increasing the gate resistance of the inactive switch or connecting a diode in parallel to the inactive switch are some effective ways to suppress the oscillation. Finally, the analyses are verified by both simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.