Abstract

We test the stability of various wormholes and black holes supported by a scalar field with a negative kinetic term. The general axial perturbations and the monopole type of polar perturbations are considered in the linear approximation. Two classes of objects are considered: (i) wormholes with flat asymptotic behavior at one end and AdS on the other (M-AdS wormholes) and (ii) regular black holes with asymptotically de Sitter expansion far beyond the horizon (the so-called black universes). A difficulty in such stability studies is that the effective potential for perturbations forms an infinite wall at throats, if any. Its regularization is in general possible only by numerical methods, and such a method is suggested in a general form and used in the present paper. As a result, we have shown that all configurations under study are unstable under spherically symmetric perturbations, except for a special class of black universes where the event horizon coincides with the minimum of the area function. For this stable family, the frequencies of quasinormal modes of axial perturbations are calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.