Abstract

Being motivated by the recent experiments on instabilities of the two-layer flows in the rotating annulus with super-rotating top, we perform a full stability analysis for such system in the shallow-water approximation. We use the collocation method which is benchmarked by comparison with analytically solvable one-layer shallow-water equations linearized about a state of cyclogeostrophic equilibrium. We describe different kinds of instabilities of the cyclogeostrophically balanced state of solid-body rotation of each layer (baroclinic, Rossby–Kelvin (RK) and Kelvin–Helmholtz (KH) instabilities), and give the corresponding growth rates and the structure of the unstable modes. We obtain the full stability diagram in the space of parameters of the problem and demonstrate the existence of crossover regions where baroclinic and RK, and RK and KH instabilities, respectively, compete having similar growth rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.