Abstract

Instabilities of the Belousov-Zhabotinsky reaction were investigated in a Taylor vortex flow reactor with constant axial flow regarded as a one-dimensional open reaction-diffusion system. The effective axial diffusion coefficient was used as one of the controlling parameters, and changed by varying the rotating speed of the inner cylinder. Effluent from an isothermal continuous stirred tank reactor was supplied as the feed into the test reactor so as to clearly specify the inlet condition of concentration oscillation. The feed rate was changed as another controlling parameter. Irregular disturbances appeared at low-concentrations of Ce4+ when the inlet condition was singly periodic oscillation, whereas no remarkable irregular oscillation could be found when the inlet condition was dynamical equilibrium. The spatio-temporal oscillation patterns were successfully described qualitatively by a numerical simulation based on the ‘Coupled Map Lattice’ method using an Oregonator reaction model. The numerical results also suggested that complex spatial and temporal behavior occurred under the inlet condition of singly periodic oscillation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.