Abstract

A simple two-layer model, the moist-convective rotating shallow water, which allows for low-cost high-resolution numerical simulations of the dynamics of the moist atmosphere in the presence of topography, is used to identify and understand dynamical processes governing the evolution of easterly waves propagating on the background of a low-latitude easterly jet crossing a land-sea boundary, a setup crudely representing the African Easterly Jet over the West-African plateau and the Atlantic ocean. We perform a thorough linear stability analysis and identify the unstable modes of the jet, which we use then for initialisation of fully nonlinear numerical simulations. In this way, we determine nonlinear evolution of unstable perturbations of the jet, both in the “dry” and moist-convective environments and highlight essential differences between the two cases. We identify a mechanism of formation of intense lower-layer cyclonic vortices at the northern flank of the jet and determine the influence of the land-sea contrast upon this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call