Abstract

The investigation of the He-induced W “fuzz” electrical properties was carried out. For the research, an automated experimental setup was designed. The setup was based on a vacuum chamber operated under high vacuum conditions (~ 10−7 Pa). The vacuum diode under investigation comprised of a flat W “fuzz” cathode with an area of about 1 cm2 and a 2 mm radius cylindrical copper anode with a hemisphere tip. The cathode-anode distance was about 100 μm. The voltage applied was up to 10 kV. A DAC/ADC module controlled an HV power supply and automatically registered currents and voltages in the circuit. The effect of a spontaneous change in the emissive ability of the investigated surface area was observed. These changes can vary significantly in magnitude. Large-scale changes can lead to a permanent increase in the emissive ability of a specific area or to a breakdown of the gap. Small changes, as a rule, are reversible, have a stepped nature, and make it difficult to record and interpret the current-voltage characteristics of the field emitter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call