Abstract

Stability principles for bilayer complex plasmas are studied. To mimic bilayer crystals and identify the main melting mechanism of such structures, a simple binary-chain model is employed. This approach provides adequate representation of the collective effects and accurate description of the interaction nonreciprocity, associated with the wake-mediated interparticle forces. It is shown that the wake-induced coupling of the wave modes sustained in different crystalline layers can trigger the dynamical instability. Furthermore, the mode coupling is demonstrated to be a universal instability mechanism, operating also in bilayer fluids. General stability criteria for the crystalline and fluid bilayers are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.