Abstract
A linear analysis is described on stabilities driven by an intense relativistic electron beam in an infinitely long, plasma-filled, and dielectric-lined circular waveguide immersed in a finite strength axial magnetic field. A dispersion equation is derived from the cold fluid theory and solved numerically. Beam-plasma instabilities due to interaction between beam modes and the Trivelpiece-Gould modes appear as well as the Cherenkov and the cyclotron Cherenkov instabilities. Parametric researches are carried out varying magnetic field strength, plasma density, and dielectric constant. Effects of a finite magnetic field and plasma filling are discussed in connection with the possibilities of using this system as a microwave radiation source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Infrared and Millimeter Waves
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.