Abstract

The increasingly central role of robotic agents in daily life requires effective human–robot interaction (HRI). For roboticists to optimize interaction design, it is crucial to understand the potential effects of robotic agents on human performance. Yet a systematic specification of contributing factors is lacking, and objective measures of HRI performance are still limited. In these regards, the findings of research on human–human interaction can provide valuable insights. In this review, we break down the complex effects of robotic agents on interacting humans into some basic building blocks based on human–human interaction findings, i.e., the potential effects of physical presence, motor actions, and task co-representation in HRI. For each effect, we advise on future directions regarding its implication. Furthermore, we propose that the neural correlates of these effects could support real-time evaluation and optimization of HRI with electroencephalograph (EEG)-based brain–computer interface (BCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.