Abstract

In this work, the forestry wastes are converted into a series of porous carbons using H3PO4 activation. These porous carbons feature a large specific surface area (1045.20 m2 g−1) and porosity that combines micro‐, meso‐, and macropores in various amounts depending on the fuel properties recorded for precursors used. Importantly, the C content recorded for forestry waste is one of the crucial factors in defining the specific surface area of the derived porous carbons. In addition, the total capacitance of the pine‐sawdust‐based porous carbon (PS‐C) sample is the highest, such as 220.55 F g−1 upon 5 mV s−1. Notably, the electrical double‐layer capacitance recorded for the samples remains essentially constant with increasing scan rates, such as ≈91.50 F g−1 for the olive‐shell‐based porous carbon, ≈123.70 F g−1 for PS‐C, and ≈105.66 F g−1 for the pine‐needle‐based porous carbon. Encouragingly, the pore‐associated sp3 site holds significant roles in the electrochemical application of the porous carbons. More importantly, the O/C value recorded for the precursor can be employed as a universal predictor of electrochemically active sites produced in porous carbons. In the findings, crucial insights are exhibited into the optimized fabrication of porous carbon with target electrochemically active sites for other applications such as catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.