Abstract

This study examined the effects of an active cycling warm-up, with and without the addition of an inspiratory muscle warm-up (IMW), on 10-km cycling time-trial performance. Ten cyclists (VO₂ = 65 ± 9 mL kg(-1) min(-1)) performed a habituation 10-km cycling time-trial and three further time-trials preceded by either no warm-up (CONT), a cycling-specific warm-up (CYC) comprising three consecutive 5-min bouts at powers corresponding to 70, 80, and 90% of the gas exchange threshold, or a cycling-specific warm-up preceded by an IMW (CYC + IMW) comprising two sets of 30 inspiratory efforts against a pressure-threshold load of 40% maximal inspiratory pressure (MIP). The cycling warm-up was followed by 2-min rest before the start of the time-trial. Time-trial performance times during CYC (14.75 ± 0.79 min) and CYC + IMW (14.70 ± 0.75 min) were not different, although both were faster than CONT (14.99 ± 0.90 min) (P < 0.05). Throughout the time-trial, physiological (minute ventilation, breathing pattern, pulmonary gas exchange, heart rate, blood lactate concentration and pH) and perceptual (limb discomfort and dyspnoea) responses were not different between CYC and CYC + IMW. Baseline MIP during CONT and CYC was 151 ± 31 and 156 ± 39 cmH₂O, respectively, and was unchanged following the time-trial. MIP increased by 8% after IMW (152 ± 27 vs. 164 ± 27 cmH2O, P < 0.05) and returned to baseline after the time-trial. Improvements in 10-km cycling time-trial performance following an active cycling warm-up were not magnified by the addition of an IMW. Therefore, an appropriately designed active whole-body warm-up does adequately prepare the inspiratory muscles for cycling time-trials lasting approximately 15 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call