Abstract

We questioned whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. Eight young and healthy participants attended the laboratory for four visits on separate days. During the first visit, height, body mass, lung function, and maximal inspiratory mouth and transdiaphragmatic pressure (Pdimax) were assessed. During visits 2-4, participants undertook inspiratory flow-resistive breathing with either no resistance (control) or resistive loads equivalent to 50 and 70% of their Pdimax (Pdimax50% and Pdimax70%) for 30 min. Participants undertook one resistive load per visit, and the order in which they undertook the loads was randomized. Inspiratory muscle pressures were higher (P < 0.05) during the 5th and Final min of Pdimax50% and Pdimax70% compared with control. Plasma F2-isoprostanes increased (P < 0.05) following inspiratory flow-resistive breathing at Pdimax70%. There were no increases in plasma protein carbonyls or total antioxidant capacity. Furthermore, although we evidenced small reductions in transdiapragmaic twitch pressures (PdiTW) after inspiratory flow-resistive breathing at Pdimax50% and Pdimax70%, this was not related to the increase in plasma F2-isoprostanes. Our novel data suggest that it is only when sufficiently strenuous that inspiratory flow-resistive breathing in humans elicits systemic oxidative stress evidenced by elevated plasma F2-isoprostanes, and based on our data, this is not related to a reduction in PdiTW.NEW & NOTEWORTHY We examined whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. It is only when sufficiently strenuous that inspiratory flow-resistive breathing elevates plasma F2-isoprostanes, and our novel data show that this is not related to a reduction in transdiaphragmatic twitch pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.