Abstract

This study attempts to evaluate the effects of deviation of external nose to nasal airflow patterns. Four typical subjects were chosen for model reconstruction based on computed tomography images of undeviated, S-shaped deviated, C-shaped deviated and slanted deviated noses. To study the hypothetical influence of deviation of external nasal wall on nasal airflow (without internal blockage), the collapsed region along the turbinate was artificially reopened in all the three cases with deviated noses. Computational fluid dynamics simulations were carried out in models of undeviated, original deviated and reopened nasal cavities at both flow rates of 167 and 500 ml/s. The shape of the anterior nasal roof was found to be collapsed on one side of the nasal airways in all the deviated noses. High wall shear stress region was found around the collapsed anterior nasal roof. The nasal resistances in cavities with deviated noses were considerably larger than healthy nasal cavity. Patterns of path-line distribution and wall shear stress distribution were similar between original deviated and reopened models. In conclusion, the deviation of an external nose is associated with the collapse of one anterior nasal roof. The crooked external nose induced a larger nasal resistance compared to the undeviated case, while the internal blockage of the airway along the turbinates further increased it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.