Abstract
1. This study describes a novel vagal respiratory reflex in anaesthetized rabbits. In contrast to the well-known inspiratory (I) off-switching by vagal afferent excitation, this vagal reflex initiates and maintains the central I activity of phrenic nerve discharges in rabbits pre-treated with antagonists of N-methyl-D-aspartate-type excitatory amino acid receptors (NMDA-Rs). 2. Under NMDA-R blockade with either dizocilpine (0.025-0.3 mg kg-1), D-2-amino-5-phosphonopentanoic acid (AP5, 0.5-1 mg, i.c.v.) or ketamine (10 mg kg-1), vagal stimulation at low frequencies (5-40 Hz) during the I phase prevented or markedly delayed the spontaneous I termination. In contrast, stimulation of the same vagal afferent at the same intensity but at a higher frequency (100-160 Hz) during the I phase immediately terminated the I phase. 3. In non-vagotomized rabbits, maintaining the tidal volume at end-expiratory levels during the I phase prevented spontaneous I termination and maintained apneusis after NMDA-R blockade with dizocilpine. 4. Brief stimulation of vagal afferents at low frequency (5-40 Hz) during the expiratory (E) phase constantly initiated phrenic I discharge after NMDA-R block. 5. We conclude that low-frequency discharge of vagal pulmonary stretch receptor afferents, as when lung volume is near functional residual capacity, promotes central I activity under NMDA-R blockade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.