Abstract

The behavior of a verdazyl-based radical bound to open-shell transition metal ions in the structurally and magnetically characterized [M(hfac)2imvd(o)] (M = Mn, Ni; hfac = (1,1,1,5,5,5)hexafluoroacetylacetonate; imvd(o) = 3-(2'-imidazolyl)-1,5-dimethyl-6-oxoverdazyl) complexes is rationalized using ab initio wave-function-based calculations analysis. The calculated exchange coupling constants J (H = -J(s(M) x s(imvd(o)); J(Mn)(calcd) = -63 cm(-1), J(Ni)(calcd) = 205 cm(-1)) are in excellent agreement with the experimental ones (J(Mn)(exp) = -63 cm(-1), J(Ni)(exp) = 193 cm(-1)). Even though both rings are involved through the binding mode of the imvd(o) radical, the spin density remains essentially localized on the nitrogen-rich ring. The singularity stems from its bidentate coordinating character. The analysis of the correlated wave function suggests that the verdazyl-based radical acts as a pi* donor ligand which allows ligand-to-metal charge transfer and excludes metal-to-ligand charge transfer. This reflects the weak covalent character of the M-imvd(o) pi coordination bond. From a magnetic point of view, the through-space exchange governs the ferromagnetic character in the Ni derivative up to 153 cm(-1) as expected from a description limited to the magnetic orbitals. Nevertheless, the CI expansion displays the participation of excited doublet and quartet states (spin polarization) on the verdazyl moiety which leads to a significant additional ferromagnetic contribution (52 cm(-1)). In the [Mn(hfac)2imvd(o)] analogue, the antiferromagnetic contribution arising from kinetic exchange is only one-third of the observed exchange coupling constant. It is necessary to introduce dynamical correlation effects to quantitatively recover the exchange interaction in this compound. Since the pi* donor and spin-polarized characters of the verdazyl moiety dominate over the negligible polarizability of the imidazole part, it is concluded that the noninnocent nature of the imvd(o) radical is held by the verdazyl ring part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.