Abstract

Redundant structure has been widely deployed to improve system reliability, as when one unit fails, the system can continue to function by using another one. Most existing studies rely on the similar assumption that the heterogeneous units are subject to periodic inspections and identical in terms of their aging situations and the numbers of resisted shocks. In practice, it is often adequate to trigger a unit individually in the event of a single shock, which intensifies the degradation of that unit, accordingly, requiring a sooner inspection to ensure its safety. In this study, the stochastic dependency among units is addressed firstly by introducing a novel activation sequence. Secondly, an adaptive system-level inspection policy is proposed by prioritizing the unit with a worse state. Finally, we take advantage of Monte Carlo methods to simulate the whole process and estimate two objectives, referring to the average system unavailability and maintenance cost, in a designed service time. It is found that the two objectives are contradictory through numerical examples. The Non-dominated Sorting Genetic Algorithm III (NSGA-III) algorithm, therefore, has been employed to find the optimal solutions in system unavailability and cost, which provide clues for practitioners in decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call