Abstract

The traditional methods of overhead power transmission line inspections are mostly unsuited as the height of transmission towers is too high and wide. Detection and inspection of insulators in aerial images with cluttered backgrounds is a challenging task for autonomous inspections. This manuscript mainly focuses on the development of autonomous Unmanned Aerial Vehicles (UAV/Quadcopter) that can hover over the transmission towers and capture images and videos by following pre-determined waypoints. To accomplish this, authors propose a new autonomous vision-based inspection that uses a Quadcopter as primary source of data, aerial images as the main source of information, and Deep Learning (DL) as the backbone analysis for inspection and focused on (i) insufficient training data, (ii) detection of insulators and their defects. A medium sized dataset of insulators for training and detection is created to overcome data insufficiency. The experimental results shows that the proposed deep learning architecture successfully identifies the anomalies of insulator such as, cracks, missing top caps and broken disk etc. The detection accuracy of the proposed deep learning algorithm can reach up to 93.5% with a detection speed of 58.2 frames/sec. The proposed DL algorithm has a promising potential towards smart inspection of insulators in power grids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call