Abstract

Localization is the process of determining the rigid-body translations and rotations that must be performed on the set of points measured on a manufactured surface to move those points into closest correspondence with the ideal design surface. In unconstrained localization all points have equal effect on the determination of the rigid-body transformation, while constrained localization allows a subset of the points to have stronger influence on the transformation. The measured points are physical points in space obtained by direct measurement of a manufactured marine propeller blade. The ideal design surface is the surface description of the propeller blade provided by the blade designer. Given that the measured blade is manufactured from the design surface description, the localization determines a Euclidean motion that brings the measured points of the manufactured surface as close as possible to the design surface. An additional option is to determine an offset distance, such that the Euclidean motion brings the measured points as close as possible to the offset of the design surface. For this optimization problem the offset distance is a seventh parameter that must be determined in addition to the six parameters of the Euclidean motion. After localization, the offset of the design surface that was determined can be used to extract the gross geometric features of the manufactured blade. These features have important hydrodynamic functions and include the camber surface, section thickness function, pitch, rake, skew, chord length, maximum thickness, maximum camber, and the leading-edge curve. The approximation of the camber surface, which is the basis of most of the remaining features, is an intricate problem relying on an extension of the concept of a Brooks ribbon. It requires the solution of a system of nonlinear differential equations and a complicated error evaluation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.