Abstract

Lubrication theory and similarity methods are used to determine the spreading rate of a localized monolayer of insoluble surfactant on the surface of a thin viscous film, in the limit of weak capillarity and weak surface diffusion. If the total mass of surfactant increases as tα, then at early times, when spreading is driven predominantly by Marangoni forces, a planar (axisymmetric) region of surfactant is shown to spread as t(1 + α)/3 (t(1 + α)/4). A shock exists at the leading edge of the monolayer; asymptotic methods are used to show that a wavetrain due to capillary forces exists ahead of the shock at small times, but that after a finite time it is swamped by diffusive effects. For α < ½ (α < 1), the diffusive lengthscale at the shock grows faster than the length of the monolayer, ultimately destroying the shock; subsequently, spreading is driven by diffusion, and proceeds as t½. The asymptotic results are shown to be good approximations of numerical solutions of the governing partial differential equations in the appropriate limits. Additional forces are also considered: weak vertical gravity can also destroy the shock in finite time, while effects usually neglected from lubrication theory are important only early in spreading. Experiments have shown that the severe thinning of the film behind the shock can cause it to rupture: the dryout process is modelled by introducing van der Waals forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.