Abstract

To better understand the thermal stability of dislocation loops formed by long-term neutron irradiation in reactor pressure vessel (RPV) steels, in-situ scanning transmission electron microscopy (STEM) observation was performed for a surveillance test specimen of a European pressurized water reactor (PWR). The surveillance test specimen was neutron irradiated to a fluence of 8.2 × 1023 neutrons•m−2. A membrane sample from the surveillance test specimen was annealed at 673 K and 723 K for 30 min using a heating holder, and the same area was in-situ observed under STEM. After annealing, dislocation loops with Burgers vectors of ½ 〈111〉 and 〈100〉 were quantitatively examined. When annealing temperature increased from 673 K to 723 K, the number of dislocation loops decreases, whereas the size of them becomes larger. Correspondingly, the proportion of 〈100〉 dislocation loops changes from 27% to 45%. The ratio of 〈100〉 to ½ 〈111〉 loops increases with annealing temperature rising. The evolution process of dislocation loops during annealing at 723 K was in-situ observed and analyzed to shed light on the transformation mechanism of dislocation loops going from ½ 〈111〉 to 〈100〉. It is the first time to directly observe that two ½ 〈111〉 dislocation loops collide with each other and coalesce to form a 〈100〉 dislocation loop. Moreover, small ½ 〈111〉 dislocation loops could be absorbed by large 〈100〉 dislocation loops, whereas the Burgers vector of 〈100〉 loops remained unchanged. Dislocation decoration occurs during annealing due to the interaction between dislocations and loops. The dislocations decorated by loops are pretty stable during the continuous annealing process, which is well explained by molecular dynamics simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call