Abstract
Data exploration and visual analytics systems are of great importance in Open Science scenarios, where less tech-savvy researchers wish to access and visually explore big raw data files (e.g., json, csv) generated by scientific experiments using commodity hardware and without being overwhelmed in the tedious processes of data loading, indexing and query optimization. In this paper, we present our work for enabling efficient query processing on large raw data files for interactive visual exploration scenarios and analytics. We introduce a framework, named RawVis, built on top of a lightweight in-memory tile-based index, VALINOR, that is constructed on-the-fly given the first user query over a raw file and progressively adapted based on the user interaction. We evaluate the performance of a prototype implementation compared to three other alternatives and show that our method outperforms in terms of response time, disk accesses and memory consumption. Particularly during an exploration scenario, the proposed method in most cases is about 5-10× faster compared to existing solutions, and requires significantly less memory resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.