Abstract

This study demonstrates that an in-situ nondestructive, ultrasonic surface wave technique can successfully detect the onset and extent of matrix cracking fatigue damage in a titanium metal matrix composite (MMC). A quasi-isotropic [0/±45/90] sSCS-6/Timetal® 21S MMC material was used for room temperature fatigue tests and the resultant matrix cracking damage was ultrasonically monitored in situ as a function of cycle count. Damage accumulation in the material was successfully correlated with decreases in ultrasonic pitch catch amplitude and verified through the use of immersion ultrasonic C-scans and metallographic techniques. Damage initiation and progression was tracked through the use of complementary nondestructive and destructive techniques. The in-situ surface wave data show that the higher the fatigue stress level, the more quickly damage occurs; conversely, the lower the stress level, the slower the damage initiation. The in-situ surface wave technique proved to be more sensitive to the accumulating damage than standard load-displacement modulus measurements. The surface wave technique also indicated a change in material properties after only one fatigue cycle. The data acquired show that a better understanding of damage initiation and accumulation can be gained using the in-situ surface wave technique in comparison to current load-displacement modulus measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.