Abstract
Carbon fiber composites are complex material systems comprising components of different length scales. It is important to understand the interactions of these components and their influence on the overall mechanical properties of the composites for development of new or improved composite materials. However, it is challenging to experimentally image the damage evolution in composites with existing tools. In this paper, we apply shearography technique for real-time in-situ imaging of subsurface damage evolution in carbon fiber composites during open-hole tensile (OHT) tests. Due to its high sensitivity to out-of-plane displacement derivative, shearography can record the initiation and growth of subsurface defects in real-time. Comparison with digital image correlation shows that shearography can provide better defect imaging results. The shearography technique provides a convenient and high-sensitive solution to visualize damage evolution in carbon fiber composites during mechanical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.