Abstract

Nickel aluminide intermetallics (e.g., Ni3Al and NiAl) are considered to be attractive materials for high-temperature structural applications. Laser-engineered net shaping (LENS) is a rapid prototyping process, which involves laser processing fine metal powders into three-dimensional shapes directly from a computer-aided design (CAD) model. In this work, an attempt has been made to fabricate aluminide intermetallic compounds via reactive in-situ alloying from elemental powders using the LENS process. In-situ reactive alloying was achieved by delivering elemental Ni and Al powders from two different powder feeders, eliminating segregation observed in the samples deposited by using the premixed elemental powders. Nickel aluminides of various compositions were obtained easily by regulating the ratio of their feed rates. The aluminide deposits exhibited a high solidification and subsolidus cracking susceptibility and porosity formation. The observed porosity resulted from a water-atomized Ni powder and can be minimized or eliminated by the use of a N2-gas-atomized Ni powder of improved quality. Cracking was due to the combined effect of the high thermal stresses generated from the LENS processing and the brittleness of the intermetallics. Crack-free deposits were fabricated by preheating the substrate to a temperature of 450 °C to 500 °C during LENS processing. Compositionally graded Ni-Al deposits with a gradient microstructure were also produced by the in-situ reactive processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call