Abstract

To promote the utilization of collagen fiber, silver salts/collagen fiber hybrid composites with photocatalytic and antibacterial activities were successfully prepared in this study via the in-situ organic-inorganic process. The surface morphology, chemical composition and structure were discussed. Scanning electron microscopy (SEM) observation showed that the silver salts/collagen fiber hybrid composites were successfully prepared with silver salt particles (300–500 nm) distributing evenly on the surface of collagen fiber. X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) analysis provided strong evidence for the successful coating of silver salts on the surface of collagen fiber and the hybrid mechanism was subsequently discussed. The photocatalytic activity was evaluated by degrading methyl orange (MO) under ultraviolet (UV) light and visible light, respectively. The results indicated that AgCl/Collagen Fiber showed the most efficient photocatalytic activity under UV and visible light irradiation. Furthermore, the introduction of Ag+ endowed the photocatalysts with antibacterial performance, which was investigated by measuring the width of the bacteriostatic belts. The results indicated the antibacterial activity of the composites, proving that the photocatalysts were durable and reusable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call