Abstract
Abstract Gallium Nitride (GaN) and Indium Gallium Nitride (InGaN) have become important semiconductor materials for the LED lighting industry. Recently, a photoluminescence (PL) technique for direct in-situ characterization of GaN and InGaN layers during epitaxial growth in a planetary metalorganic vapor phase epitaxy (MOVPE) reactor was reported. The PL signals reveal – at the earliest possible stage – information about current layer thickness, temperature, composition, surface roughness, and self-absorption. Thus, the PL data is valuable for both controlling and optimizing the growth parameters, thereby promising both better devices and a better yield for the LED industry. This technical report describes an extension of this PL technique to close coupled showerhead (CCS) reactors with narrow optical viewports. In contrast to the wide aperture optics in previous investigations, a compact and all-fiber optical probe without voluminous lens optics, filter elements or beam splitters was used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.