Abstract

Nanoprotrusion (NP) on metal surface and its inevitable contamination layer under high electric field is often considered as the primary precursor that leads to vacuum breakdown, which plays an extremely detrimental effect for high energy physics equipment and many other devices. Yet, the NP growth has never been experimentally observed. Here, we conduct field emission (FE) measurements along with insitu transmission electron microscopy (TEM) imaging of an amorphous-carbon (a-C) coated tungsten nanotip at various nanoscale vacuum gap distances. We find that under certain conditions, the FE current-voltage (I-V) curves switch abruptly into an enhanced-current state, implying the growth of an NP. We then run field emission simulations, demonstrating that the temporary enhanced-current I-V is perfectly consistent with the hypothesis that a NP has grown at the apex of the tip. This hypothesis is also confirmed by the repeatable insitu observation of such a nanoprotrusion and its continued growth during successive FE measurements in TEM. We tentatively attribute this phenomenon to field-induced biased diffusion of surface a-C atoms, after performing a finite element analysis that excludes the alternative possibility of field-induced plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.