Abstract

A new and non-invasive technique based on confocal laser scanning microscopy (CLSM) that allows the visualization of penetrant diffusion in-situ has been developed and was applied to quantify local solute dynamics in polymeric films. The effectiveness of the proposed technique was demonstrated using a model penetrant, rhodamine-6G (Rh-6G), and a system of polyvinyl alcohol (PVA) films with different degree of cross-linking, and different content of montmorillonite (MMT) clay. The penetrant's transport across PVA films were monitored by measuring the time evolutions of through thickness fluorescence intensity profiles. These profiles were then converted to concentration profiles, which allow local diffusion coefficients of the model solute (i.e. Rh-6G) to be determined. The developed methodology was applied to both single layer and bilayers films and local diffusion heterogeneity was detected. Hence the technique developed can be applied to multi-layer films, and can be beneficial to film developments for packaging and filtration technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.