Abstract

The 157nm molecular fluorine laser is regarded as the next generation light source for semiconductor exposure technology in the vacuum ultraviolet (VUV) region. Research for high performance F2 laser optical materials is therefore indispensable. In this paper, we describe methods and results of evaluating optical materials used in the 157nm region. In order to evaluate F2 laser optical materials, we have developed in-situ system, which measures the real-time transmittance at 157nm during laser irradiation and the transmittance in the vacuum ultraviolet (VUV) region directly after laser irradiation to avoid airborne contamination. The system is purged with high purity nitrogen gas during irradiation to reduce laser light absorption and to keep contamination at a minimum. Due to F2 laser irradiation cleaning, the transmittance of uncoated calcium fluoride (CaF2) samples initially rapidly then gradually increased during 50 million pulses (Mpls). Thereafter the transmittance remained constant. In addition, durability test results of CaF2 substrates and coatings are also presented. Especially coating quality varied enormously between suppliers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call